1,502 research outputs found

    The sin2ϕ\sin2\phi azimuthal asymmetry in single longitudinally polarized πN\pi N Drell-Yan process

    Full text link
    We study the sin2ϕ\sin2\phi azimuthal asymmetry in the πN\pi N Drell-Yan process, when the nucleon is longitudinally polarized. The asymmetry is contributed by the combination of the Boer-Mulders function and the longitudinal transversity distribution function. We consider the Drell-Yan processes by π±\pi^\pm beams colliding on the proton and deuteron targets, respectively. We calculate the sin2ϕ\sin2\phi azimuthal asymmetries in these processes using the Boer-Mulders function and the longitudinal transversity from spectator models. We show that the study on single polarized πN\pi N Drell-Yan processes can not only give the information on the new 3-dimensional parton distribution functions in momentum space, but also shed light on the chiral-odd structure of the longitudinally polarized nucleon.Comment: 7 pages, 3 figures. Final version for publication in PR

    Nanoscale capacitance: a classical charge-dipole approximation

    Full text link
    Modeling nanoscale capacitance presents particular challenge because of dynamic contribution from electrodes, which can usually be neglected in modeling macroscopic capacitance and nanoscale conductance. We present a model to calculate capacitances of nano-gap configurations and define effective capacitances of nanoscale structures. The model is implemented by using a classical atomic charge-dipole approximation and applied to calculate capacitance of a carbon nanotube nano-gap and effective capacitance of a buckyball inside the nano-gap. Our results show that capacitance of the carbon nanotube nano-gap increases with length of electrodes which demonstrates the important roles played by the electrodes in dynamic properties of nanoscale circuits.Comment: 11 pages, 6 figure

    Effects of Finite Deformed Length in Carbon Nanotubes

    Full text link
    The effect of finite deformed length is demonstrated by squashing an armchair (10,10) single-walled carbon nanotube with two finite tips. Only when the deformed length is long enough, an effectual metal-semiconductor-metal heterojunction can be formed in the metallic tube. The effect of finite deformed length is explained by the quantum tunnelling effect. Furthermore, some conceptual designs of nanoscale devices are proposed from the metal-semiconductor-metal heterojunction.Comment: 4 pages, 4 figure

    Metal-to-semiconductor transition in squashed armchair carbon nanotubes

    Get PDF
    Journal ArticleWe investigate electronic transport properties of the squashed armchair carbon nanotubes, using tight-binding molecular dynamics and the Green's function method. We demonstrate a metal-to-semiconductor transition while squashing the nanotubes and a general mechanism for such a transition. It is the distinction of the two sublattices in the nanotube that opens an energy gap near the Fermi energy. We show that the transition has to be achieved by a combined effect of breaking of mirror symmetry and bond formation between the flattened faces in the squashed nanotubes

    Structural Trends Interpretation of the Metal-to-Semiconductor Transition in Deformed Carbon Nanotubes

    Full text link
    Two mechanisms that drive metal-to-semiconductor transitions in single-walled carbon nanotubes are theoretically analyzed through a simple tight-binding model. By considering simple structural trends, the results demonstrate that metal-to-semiconductor transitions can be induced more readily in metallic zigzag nanotubes than in armchair nanotubes. Furthermore, it is shown that both mechanisms have the effect of making the two originally equivalent sublattices physically distinguishable.Comment: 4 pages, 4 figure

    The Effects of the Tractor and Semitrailer Routing Problem on Mitigation of Carbon Dioxide Emissions

    Get PDF
    The incorporation of CO2 emissions minimization in the vehicle routing problem (VRP) is of critical importance to enterprise practice. Focusing on the tractor and semitrailer routing problem with full truckloads between any two terminals of the network, this paper proposes a mathematical programming model with the objective of minimizing CO2 emissions per ton-kilometer. A simulated annealing (SA) algorithm is given to solve practical-scale problems. To evaluate the performance of the proposed algorithm, a lower bound is developed. Computational experiments on various problems generated randomly and a realistic instance are conducted. The results show that the proposed methods are effective and the algorithm can provide reasonable solutions within an acceptable computational time
    corecore